Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(3): 1563-1577, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38323427

RESUMO

Hydrogels are ideal materials to encapsulate cells, making them suitable for applications in tissue engineering and regenerative medicine. However, they generally do not possess adequate mechanical strength to functionally replace human tissues, and therefore they often need to be combined with reinforcing structures. While the interaction at the interface between the hydrogel and reinforcing structure is imperative for mechanical function and subsequent biological performance, this interaction is often overlooked. Melt electrowriting enables the production of reinforcing microscale fibers that can be effectively integrated with hydrogels. Yet, studies on the interaction between these micrometer scale fibers and hydrogels are limited. Here, we explored the influence of covalent interfacial interactions between reinforcing structures and silk fibroin methacryloyl hydrogels (silkMA) on the mechanical properties of the construct and cartilage-specific matrix production in vitro. For this, melt electrowritten fibers of a thermoplastic polymer blend (poly(hydroxymethylglycolide-co-ε-caprolactone):poly(ε-caprolactone) (pHMGCL:PCL)) were compared to those of the respective methacrylated polymer blend pMHMGCL:PCL as reinforcing structures. Photopolymerization of the methacrylate groups, present in both silkMA and pMHMGCL, was used to generate hybrid materials. Covalent bonding between the pMHMGCL:PCL blend and silkMA hydrogels resulted in an elastic response to the application of torque. In addition, an improved resistance was observed to compression (∼3-fold) and traction (∼40-55%) by the scaffolds with covalent links at the interface compared to those without these interactions. Biologically, both types of scaffolds (pHMGCL:PCL and pMHMGCL:PCL) showed similar levels of viability and metabolic activity, also compared to frequently used PCL. Moreover, articular cartilage progenitor cells embedded within the reinforced silkMA hydrogel were able to form a cartilage-like matrix after 28 days of in vitro culture. This study shows that hybrid cartilage constructs can be engineered with tunable mechanical properties by grafting silkMA hydrogels covalently to pMHMGCL:PCL blend microfibers at the interface.


Assuntos
Cartilagem Articular , Fibroínas , Humanos , Engenharia Tecidual/métodos , Fibroínas/química , Hidrogéis/química , Polímeros , Alicerces Teciduais/química , Poliésteres/química
2.
Elife ; 122023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009703

RESUMO

During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.


Assuntos
Cartilagem Articular , Mamíferos , Animais , Matriz Extracelular , Pele
3.
iScience ; 25(9): 104979, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36105583

RESUMO

Remaining challenges in auricular cartilage tissue engineering include acquiring sufficient amounts of regeneration-competent cells and subsequent production of high-quality neocartilage. Progenitor cells are a resident subpopulation of native cartilage, displaying a high proliferative and cartilage-forming capacity, yet their potential for regenerative medicine is vastly understudied. In this study, human auricular cartilage progenitor cells were newly identified in healthy cartilage and, importantly, in microtia-impaired chondral remnants. Their cartilage repair potential was assessed via in vitro 3D culture upon encapsulation in a gelatin-based hydrogel, and subsequent biochemical, mechanical, and histological analyses. Auricular cartilage progenitor cells demonstrate a potent ability to proliferate without losing their multipotent differentiation ability and to produce cartilage-like matrix in 3D culture. As these cells can be easily obtained through a non-deforming biopsy of the healthy ear or from the otherwise redundant microtia remnant, they can provide an important solution for long-existing challenges in auricular cartilage tissue engineering.

4.
Biofabrication ; 14(3)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35354130

RESUMO

Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material three-dimensional (3D) bioprinting strategies have the potential to resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge to date. In this study, we developed endothelial cell-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM), respectively. Human umbilical vein endothelial cell (HUVEC)-driven capillary networks started to form 2 d after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29%, and the number of microvessel junctions by 37% after 14 d, compared to bioinks with pro-angiogenic col-1 MFs. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a gellan gum microgel suspension bath. These 3D meniscus-like constructs were cultured up to 14 d, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications includingin vitromodels of vascular-to-avascular tissue interfaces, cancer progression, and for testing anti-angiogenic therapies.


Assuntos
Bioimpressão , Engenharia Tecidual , Bioimpressão/métodos , Cartilagem , Matriz Extracelular , Células Endoteliais da Veia Umbilical Humana , Humanos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
J Pain ; 22(11): 1385-1395, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33964414

RESUMO

Skeletal diseases and their surgical treatment induce severe pain. The innervation density of bone potentially explains the severe pain reported. Animal studies concluded that sensory myelinated A∂-fibers and unmyelinated C-fibers are mainly responsible for conducting bone pain, and that the innervation density of these nerve fibers was highest in periosteum. However, literature regarding sensory innervation of human bone is scarce. This observational study aimed to quantify sensory nerve fiber density in periosteum, cortical bone, and bone marrow of axial and appendicular human bones using immunohistochemistry and confocal microscopy. Multivariate Poisson regression analysis demonstrated that the total number of sensory and sympathetic nerve fibers was highest in periosteum, followed by bone marrow, and cortical bone for all bones studied. Bone from thoracic vertebral bodies contained most sensory nerve fibers, followed by the upper extremity, lower extremity, and parietal neurocranium. The number of nerve fibers declined with age and did not differ between male and female specimens. Sensory nerve fibers were organized as a branched network throughout the periosteum. The current results provide an explanation for the severe pain accompanying skeletal disease, fracture, or surgery. Further, the results could provide more insight into mechanisms that generate and maintain skeletal pain and might aid in developing new treatment strategies. PERSPECTIVE: This article presents the innervation of human bone and assesses the effect of age, gender, bone compartment and type of bone on innervation density. The presented data provide an explanation for the severity of bone pain arising from skeletal diseases and their surgical treatment.


Assuntos
Doenças Ósseas , Medula Óssea/inervação , Osso Cortical/inervação , Dor Musculoesquelética , Periósteo/inervação , Fatores Etários , Humanos , Imuno-Histoquímica
6.
Adv Healthc Mater ; 9(10): e1901807, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32324336

RESUMO

The clinical translation of three-dimensionally printed bioceramic scaffolds with tailored architectures holds great promise toward the regeneration of bone to heal critical-size defects. Herein, the long-term in vivo performance of printed hydrogel-ceramic composites made of methacrylated-oligocaprolactone-poloxamer and low-temperature self-setting calcium-phosphates is assessed in a large animal model. Scaffolds printed with different internal architectures, displaying either a designed porosity gradient or a constant pore distribution, are implanted in equine tuber coxae critical size defects. Bone ingrowth is challenged and facilitated only from one direction via encasing the bioceramic in a polycaprolactone shell. After 7 months, total new bone volume and scaffold degradation are significantly greater in structures with constant porosity. Interestingly, gradient scaffolds show lower extent of remodeling and regeneration even in areas having the same porosity as the constant scaffolds. Low regeneration in distal regions from the interface with native bone impairs ossification in proximal regions of the construct, suggesting that anisotropic architectures modulate the cross-talk between distant cells within critical-size defects. The study provides key information on how engineered architectural patterns impact osteoregeneration in vivo, and also indicates the equine tuber coxae as promising orthotopic model for studying materials stimulating bone formation.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Animais , Regeneração Óssea , Cavalos , Osteogênese , Porosidade
7.
Vet Surg ; 48(7): 1287-1298, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31441092

RESUMO

OBJECTIVE: To report the long-term outcome of nine dogs treated for caudal cervical spondylomyelopathy (CCSM) with surgical spinal fusion. STUDY DESIGN: Short case series. ANIMALS: Nine large-breed dogs. METHODS: Medical records of dogs treated for disc-associated CCSM (2013-2016) were reviewed. The surgery objective was spinal distraction by implantation of a SynCage and fixation with two Unilock plates. Follow-up included the Helsinki pain score questionnaire, neurological grading, radiography, computed tomography (CT), and micro-CT (µCT) with subsequent histopathology (two dogs). RESULTS: Clinical follow-up was obtained between 9 and 51 months (27.4 ± 13.4 months). The Helsinki pain score and neurological Griffith score improved (P < .01) in all dogs and in eight of nine dogs, respectively. According to CT, the volume of bone (mean ± SD) through the cage was 79.5% ± 14.3%, including compact bone (53.0% ± 23.4%). Subsidence was seen in one of nine dogs. Implant failure was evident in four dogs, and plates were removed in two dogs. In seven of nine dogs, infraclinical pathology was observed in adjacent segment, associated with implants engaging adjacent intervertebral discs. Radiographic evidence of bony fusion between vertebral bodies was noted in all dogs. Spinal fusion was confirmed by µCT and histopathology in two cervical spine segments that became available at 22 and 40 months postoperatively. CONCLUSION: Instrumented spinal fusion in dogs with disc-associated CCSM resulted in owner satisfaction and radiographic evidence of interbody spinal fusion in all dogs. CLINICAL SIGNIFICANCE: The fusion distraction technique reported here can be used to achieve spinal fusion with a good long-term outcome.


Assuntos
Vértebras Cervicais/cirurgia , Doenças do Cão/cirurgia , Doenças da Medula Espinal/veterinária , Doenças da Coluna Vertebral/veterinária , Fusão Vertebral/veterinária , Animais , Doenças do Cão/patologia , Cães , Falha de Equipamento , Feminino , Humanos , Disco Intervertebral/cirurgia , Masculino , Próteses e Implantes , Radiografia , Doenças da Medula Espinal/cirurgia , Doenças da Coluna Vertebral/cirurgia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
8.
PLoS One ; 14(4): e0213483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947269

RESUMO

Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1-34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes. Healthy human articular cartilage-derived chondrocytes (n = 6 donors) were cultured on type II collagen-coated transwells with/without 0.1 or 1.0 µM PTH from day 0, 9, or 21 until the end of culture (day 28). Extracellular matrix production, (pre)hypertrophy and PTH signaling were assessed by RT-qPCR and/or immunohistochemistry for collagen type I, II, X, RUNX2, MMP13, PTHR1 and IHH and by determining glycosaminoglycan production and DNA content. The Bern score assessed cartilage quality by histology. Regardless of the concentration and initiation of supplementation, PTH treatment significantly decreased DNA and glycosaminoglycan content and reduced the Bern score compared with controls. Type I collagen deposition was increased, whereas PTHR1 expression and type II collagen deposition were decreased by PTH supplementation. Expression of the (pre)hypertrophic markers MMP13, RUNX2, IHH and type X collagen were not affected by PTH. In conclusion, PTH supplementation to healthy human articular chondrocytes did not affect hypertrophic differentiation, but negatively influenced cartilage quality, the tissues' extracellular matrix and cell content. Although PTH may be an effective inhibitor of hypertrophic differentiation in MSC-based cartilage repair, care may be warranted in applying accessory PTH treatment due to its effects on articular chondrocytes.


Assuntos
Cartilagem/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Regeneração/genética , Autoenxertos/crescimento & desenvolvimento , Autoenxertos/metabolismo , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular/genética , Condrócitos/metabolismo , Colágeno Tipo X/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Proteínas Hedgehog/genética , Humanos , Metaloproteinase 13 da Matriz/genética , Células-Tronco Mesenquimais/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Fragmentos de Peptídeos/genética , Transdução de Sinais/genética
9.
Tissue Eng Part C Methods ; 24(4): 222-232, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29457534

RESUMO

Hydrogels can facilitate nucleus pulposus (NP) regeneration, either for clinical application or research into mechanisms of regeneration. However, many different hydrogels and culture conditions for human degenerated NP have been employed, making literature data difficult to compare. Therefore, we compared six different hydrogels of natural polymers and investigated the role of serum in the medium and of osmolarity during expansion or redifferentiation in an attempt to provide comparators for future studies. Human NP cells of Thompson grade III discs were cultured in alginate, agarose, fibrin, type II collagen, gelatin methacryloyl (gelMA), and hyaluronic acid-poly(ethylene glycol) hydrogels. Medium containing fetal bovine serum and a serum-free (SF) medium were compared in agarose, gelMA, and type II collagen hydrogels. Isolation and expansion of NP cells in low compared to high osmolarity medium were performed before culture in agarose and type II collagen hydrogels in media of varying osmolarity. NP cells in agarose produced the highest amounts of proteoglycans, followed by cells in type II collagen hydrogels. The absence of serum reduced the total amount of proteoglycans produced by the cells, although incorporation efficiency was higher in type II collagen hydrogels in the absence than in the presence of serum. Isolation and expansion of NP cells in high osmolarity medium improved proteoglycan production during culture in hydrogels, but variation in osmolarity during redifferentiation did not have any effect. Agarose hydrogels seem to be the best option for in vitro culture of human NP cells, but for clinical application, type II collagen hydrogels may be better because, as opposed to agarose, it degrades in time. Although culture in SF medium reduces the amount of proteoglycans produced during redifferentiation culture, isolating and expanding the cells in high osmolarity medium can largely compensate for this loss.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Disco Intervertebral/citologia , Núcleo Pulposo/citologia , Regeneração , Idoso , Células Cultivadas , Colágeno Tipo II/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Disco Intervertebral/metabolismo , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Concentração Osmolar
10.
ALTEX ; 35(1): 65-76, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28884783

RESUMO

The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ex vivo osteochondral plug model was used and evaluated. The role of the delivered and endogenous cells in the repair process was investigated. Full thickness cartilage defects were created in equine osteochondral plugs. Defects were filled with (A) chondrocytes at the bottom of the defect, covered with a cell-free hydrogel, (B) chondrocytes homogeneously encapsulated in a hydrogel, and (C, D) combinations of A and B with different cell densities. Plugs were cultured for up to 57 days, after which the cartilage and repair tissues were characterized and compared to baseline samples. Additionally, at day 21, the origin of cells in the repair tissue was evaluated. Best outcomes were obtained with conditions C and D, which resulted in well-integrated cartilage-like tissue that completely filled the defect, regardless of the initial cell density. A critical role of the spatial chondrocyte distribution in the repair process was observed. Moreover, the osteochondral plugs stimulated cartilage formation in the hydrogels when cultured in the defects. The resulting repair tissue originated from the delivered cells. These findings confirm the potential of the osteochondral plug model for the optimization of the composition of cartilage implants and for studying repair mechanisms.


Assuntos
Cartilagem/fisiologia , Condrócitos/fisiologia , Hidrogéis , Engenharia Tecidual/métodos , Alternativas aos Testes com Animais , Animais , Células Cultivadas , Cavalos
11.
J Orthop Res ; 36(3): 881-890, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28840952

RESUMO

Evidence is growing for the existence of an obesity-related phenotype of osteoarthritis in which low-grade inflammation and a disturbed metabolic profile play a role. The contribution of an obesity-induced metabolic dysbalance to the progression of the features of osteoarthritis upon mechanically induced cartilage damage was studied in a rat in vivo model. Forty Wistar rats were randomly allocated 1:1 to a standard diet or a high-fat diet. After 12 weeks, in 14 out of 20 rats in each group, cartilage was mechanically damaged in the right knee joint. The remaining six animals in each group served as controls. After a subsequent 12 weeks, serum was collected for metabolic state, subchondral bone changes assessed by µCT imaging, osteoarthritis severity determined by histology, and macrophage presence assessed by CD68 staining. The high-fat diet increased statistically all relevant metabolic parameters, resulting in a dysmetabolic state and subsequent synovial inflammation, whereas cartilage degeneration was hardly influenced. The high-fat condition in combination with mechanical cartilage damage resulted in a clear statistically significant progression of the osteoarthritic features, with increased synovitis and multiple large osteophytes. Both the synovium and osteophytes contained numerous CD68 positive cells. It is concluded that a metabolic dysbalance due to a high-fat diet increases joint inflammation without cartilage degeneration. The dysmetabolic state clearly accelerates progression of osteoarthritis upon surgically induced cartilage damage supported by inflammatory responses as demonstrated by histology and increased CD68 expressing cells localized on the synovial membrane and osteophytes. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:881-890, 2018.


Assuntos
Artrite/etiologia , Obesidade/complicações , Animais , Artrite/diagnóstico por imagem , Artrite/patologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Articulações/diagnóstico por imagem , Articulações/patologia , Macrófagos/fisiologia , Masculino , Obesidade/metabolismo , Ratos Wistar , Microtomografia por Raio-X
12.
J Mech Behav Biomed Mater ; 77: 551-556, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29073574

RESUMO

The mechanical properties of articular cartilage depend on the quality of its matrix, which consists of collagens and glycosaminoglycans (GAGs). The accumulation of advanced glycation end products (AGEs) can greatly affect the mechanics of cartilage. In the current study, we simulated the accumulation of AGEs by using L-threose to cross-link collagen molecules in the cartilage matrix (in vitro). The resulting changes in the mechanical properties (stiffness) of cartilage are then measured both at the micrometer-scale (using micro-indenter) and nanometer-scale (using indentation-type atomic force microscopy). Non-enzymatic cross-linking within the cartilage matrix was confirmed by the browning of L-threose-treated samples. We observed > 3 times increase in the micro-scale stiffness and up to 12-fold increase in the nano-scale stiffness of the glycated cartilage in the peak pertaining to the collagen fibers, which is caused by cartilage network embrittlement. At the molecular level, we found that besides the collagen component, the glycation process also influenced the GAG macromolecules. Comparing cartilage samples before and after L-threose treatment revealed that artificially induced-AGEs also decelerate in vitro degradation (likely via matrix metalloproteinases), observed at both micro- and nano-scales. The combined observations suggest that non-enzymatic glycation may play multiple roles in mechanochemical functioning of articular cartilage.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Glicosilação , Articulação do Joelho/diagnóstico por imagem , Nanoestruturas/química , Animais , Cartilagem Articular/química , Colágeno/metabolismo , Elasticidade , Fêmur/diagnóstico por imagem , Produtos Finais de Glicação Avançada/metabolismo , Glicosaminoglicanos/metabolismo , Masculino , Microscopia de Força Atômica , Distribuição Normal , Ratos , Estresse Mecânico , Tetroses/química
13.
Acta Biomater ; 66: 238-247, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174589

RESUMO

Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown. In this study we compared focal adhesion formation and glycosaminoglycan (GAG) deposition by NP cells in a range of hydrogels. Using a focal adhesion kinase (FAK) inhibitor, we demonstrated that focal adhesion signaling is involved in the response of NP cells in hydrogels that contain integrin binding sites (i.e. methacrylated gelatin (gelMA) and type II collagen), but not in hydrogels deplete from integrin binding sites such as alginate and agarose, or CD44-binding hydrogels based on hyaluronic acid. As a result of FAK inhibition we observedenhanced proteoglycan production in gelMA, but decreased production in type II collagen hydrogels, which could be explained by alteration in cell fate as supported by the increase in the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARy). Furthermore, GAG deposition was inversely proportional to polymer concentration in integrin-binding gelMA, while no direct relationship was found for the non-integrin binding gels alginate and agarose. This corroborates our finding that focal adhesion formation plays an important role in NP cell response to its surrounding matrix. STATEMENT OF SIGNIFICANCE: Biomaterials are increasingly being investigated for regenerative medicine applications, including regeneration of the nucleus pulposus. Cells interact with their environment and are influenced by extracellular matrix or polymer properties. Insight in these interactions can improve regeneration and helps to understand degeneration processes. The role of focal adhesion formation in the regenerative response of nucleus pulposus cells is largely unknown. Therefore, the relation between materials, stiffness and focal adhesion formation is studied here.


Assuntos
Carboidratos/farmacologia , Colágeno/farmacologia , Adesões Focais/metabolismo , Hidrogéis/farmacologia , Núcleo Pulposo/citologia , Regeneração/efeitos dos fármacos , Transdução de Sinais , Actinas/metabolismo , Adulto , Idoso , Força Compressiva , DNA/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Coloração e Rotulagem , Vinculina/metabolismo
14.
Acta Biomater ; 61: 41-53, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782725

RESUMO

Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. STATEMENT OF SIGNIFICANCE: Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells (ACPCs), that to date, received limited attention in biomaterials and tissue engineering applications. Harnessing the potential of these cells in 3D hydrogels can open new avenues for biomaterial-based regenerative therapies, especially with advanced biofabrication technologies (e.g. bioprinting). This study highlights the potential of ACPCs to generate neo-cartilage in a gelatin-based hydrogel and bioink. The ACPC-laden hydrogel is a suitable substrate for chondrogenesis and data shows it has a bias in directing cells towards a superficial zone phenotype. For the first time, ACPC-hydrogels are evaluated both as alternative for and in combination with chondrocytes and MSCs, using co-cultures and bioprinting for cartilage regeneration in vitro. This study provides important cues on ACPCs, indicating they represent a promising cell source for the next generation of cartilage constructs with increased biomimicry.


Assuntos
Bioimpressão/métodos , Cartilagem Articular/citologia , Hidrogéis/farmacologia , Tinta , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Técnicas de Cocultura , Força Compressiva , DNA/metabolismo , Glicosaminoglicanos/metabolismo , Cavalos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Sus scrofa
15.
Tissue Eng Part C Methods ; 23(11): 804-814, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28795641

RESUMO

OBJECTIVE: To report on the experiences with the use of commercial and autologous fibrin glue (AFG) and of an alternative method based on a 3D-printed polycaprolactone (PCL) anchor for the fixation of hydrogel-based scaffolds in an equine model for cartilage repair. METHODS: In a first study, three different hydrogel-based materials were orthotopically implanted in nine horses for 1-4 weeks in 6 mm diameter full-thickness cartilage defects in the medial femoral trochlear ridge and fixated with commercially available fibrin glue (CFG). One defect was filled with CFG only as a control. In a second study, CFG and AFG were compared in an ectopic equine model. The third study compared the efficacy of AFG and a 3D-printed PCL-based osteal anchor for fixation of PCL-reinforced hydrogels in three horses for 2 weeks, with a 4-week follow-up to evaluate integration of bone with the PCL anchor. Short-term scaffold integration and cell infiltration were evaluated by microcomputed tomography and histology as outcome parameters. RESULTS: The first study showed signs of subchondral bone resorption in all defects, including the controls filled with CFG only, with significant infiltration of neutrophils. Ectopically, CFG induced clear inflammation with strong neutrophil accumulation; AFG was less reactive, showing fibroblast infiltration only. In the third study the fixation potential for PCL-reinforced hydrogels of AFG was inferior to the PCL anchor. PCL reinforcement had disappeared from two defects and showed signs of dislodging in the remaining four. All six constructs fixated with the PCL anchor were still in place after 2 weeks. At 4 weeks, the PCL anchor showed good integration and signs of new bone formation. CONCLUSIONS: The use of AFG should be preferred to xenogeneic products in the horse, but AFG is subject to individual variations and laborious to make. The PCL anchor provides the best fixation; however, this technique involves the whole osteochondral unit, which entails a different conceptual approach to cartilage repair.


Assuntos
Cartilagem Articular/patologia , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização , Animais , Regeneração Óssea/efeitos dos fármacos , Cartilagem Articular/diagnóstico por imagem , Modelos Animais de Doenças , Adesivo Tecidual de Fibrina/farmacologia , Cavalos , Implantes Experimentais , Inflamação/patologia , Tamanho do Órgão , Poliésteres/química , Impressão Tridimensional , Cicatrização/efeitos dos fármacos , Microtomografia por Raio-X
16.
Stem Cells ; 35(8): 1984-1993, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600828

RESUMO

MSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with 10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects in 35 patients. No treatment-related serious adverse events were found and statistically significant improvement in clinical outcome shown. Magnetic resonance imaging and second-look arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center of the repair tissue was found to have hyaline-like features with a high concentration of proteoglycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the regenerated tissue contained patient-DNA only. These findings support the hypothesis that allogeneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm shift in which MSCs are applied as augmentations or "signaling cells" rather than differentiating stem cells and opens doors for other applications. Stem Cells 2017;35:1984-1993.


Assuntos
Cartilagem Articular/patologia , Condrócitos/transplante , Transplante de Células-Tronco Mesenquimais , Adulto , Artroscopia , Cartilagem Articular/diagnóstico por imagem , Demografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Repetições de Microssatélites/genética , Transplante Autólogo/efeitos adversos , Resultado do Tratamento
17.
J Control Release ; 253: 64-72, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28284832

RESUMO

Controlled biomaterial-based corticosteroid release might circumvent multiple injections and the accompanying risks, such as hormone imbalance and muscle weakness, in osteoarthritic (OA) patients. For this purpose, microspheres were prepared from an amino acid-based polyester amide (PEA) platform and loaded with triamcinolone acetonide (TAA). TAA loaded microspheres were shown to release TAA for over 60days in PBS. Furthermore, the bioactivity lasted at least 28days, demonstrated by a 80-95% inhibition of PGE2 production using TNFα-stimulated chondrocyte culture, indicating inhibition of inflammation. Microspheres loaded with the near infrared marker NIR780-iodide injected in healthy rat joints or joints with mild collagenase-induced OA showed retention of the microspheres up till 70days after injection. After intra-articular injection of TAA-loaded microspheres, TAA was detectable in the serum until day seven. Synovial inflammation was significantly lower in OA joints injected with TAA-loaded microspheres based on histological Krenn scores. Injection of TAA-loaded nor empty microspheres had no effect on cartilage integrity as determined by Mankin scoring. In conclusion, the PEA platform shows safety and efficacy upon intra-articular injection, and its extended degradation and release profiles compared to the currently used PLGA platforms may render it a good alternative. Even though further in vivo studies may need to address dosing and readout parameters such as pain, no effect on cartilage pathology was found and inflammation was effectively lowered in OA joints.


Assuntos
Amidas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Microesferas , Osteoartrite/tratamento farmacológico , Poliésteres/administração & dosagem , Triancinolona Acetonida/administração & dosagem , Amidas/química , Amidas/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Dinoprostona/metabolismo , Liberação Controlada de Fármacos , Feminino , Humanos , Injeções Intra-Articulares , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Osteoartrite/patologia , Poliésteres/química , Poliésteres/uso terapêutico , Ratos Sprague-Dawley , Triancinolona Acetonida/química , Triancinolona Acetonida/uso terapêutico
18.
J Orthop Res ; 35(3): 496-505, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27183198

RESUMO

Several experimental models of osteoarthritis in rats are used to study the pathophysiology of osteoarthritis. Many mechanically induced models have the limitation that permanent joint instability is induced by, for example, ligament transection or meniscal damage. This permanent instability will counteract the potential beneficial effects of therapy. The groove model of osteoarthritis uses a one-time trigger, surgically induced cartilage damage on the femoral condyles, and has been validated for the canine tibia-femoral compartment. The present study evaluates this model for the rat knee joint. The articular cartilage of the weight bearing surface of both femoral condyles and trochlea were damaged (grooved) without damaging the underlying subchondral bone. Severity of joint degeneration was histologically assessed, in addition to patella cartilage damage, and subchondral bone characteristics by means of (contrast-enhanced) micro-CT. Mild histological degeneration of the surgically untouched tibial plateau cartilage was observed in addition to damage of the femoral condyles, without clear synovial tissue inflammation. Contrast enhanced micro-CT demonstrated proteoglycan loss of the surgically untouched patella cartilage. Besides, a more sclerotic structure of the subchondral bone was observed. The tibia-femoral groove model in a rat results in mild knee joint degeneration, without permanent joint instability and joint inflammation. This makes the rat groove model a useful model to study the onset and progression of post-traumatic non-inflammatory osteoarthritis, creating a relatively sensitive model to study disease modifying osteoarthritic drugs. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:496-505, 2017.


Assuntos
Osso e Ossos/patologia , Cartilagem/patologia , Modelos Animais de Doenças , Osteoartrite do Joelho/etiologia , Animais , Masculino , Osteoartrite do Joelho/patologia , Ratos Wistar
19.
J Orthop Res ; 35(1): 140-146, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101345

RESUMO

Diffuse idiopathic skeletal hyperostosis (DISH) is a predominantly radiographic diagnosis and histological knowledge of DISH is limited. The aim of this study was to describe the histological characteristics of DISH in the spinal column and to study the relation between DISH and intervertebral disc (IVD) degeneration. Therefore, 10 human cadaveric spines with fluoroscopic evidence of DISH were compared with 10 controls. Plain radiographs and computed tomography (CT) scans were obtained and tissue blocks were resected from three predefined levels of all specimens. The microscopic sections were scored by two blinded observers using a newly developed scoring system specific for characteristics of DISH and a validated scoring system for IVD degeneration. Maximum IVD height was measured on the CT scans. Analyses were performed using Fisher's exact test and Student's t-test. When compared to controls, the right sided sections from DISH specimens showed partial or complete bone bridges, consisting of cortical woven bone, accompanied by morphological changes in the adjoining part of the IVD. Using the histological scoring system for DISH, all parameters were significantly different between the DISH and control group (p < 0.01). The contralateral location did not show differences between the groups. The overall degree of IVD degeneration and height of IVD was comparable for the two groups. The histopathological changes observed in spines with DISH corresponded to the fluoroscopic images and CT scans. The degree of IVD degeneration and IVD height was comparable for both groups, suggesting a limited role for IVD degeneration in the pathogenesis of DISH. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:140-146, 2017.


Assuntos
Hiperostose Esquelética Difusa Idiopática/patologia , Coluna Vertebral/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hiperostose Esquelética Difusa Idiopática/classificação , Hiperostose Esquelética Difusa Idiopática/complicações , Degeneração do Disco Intervertebral/etiologia , Masculino
20.
Stem Cells ; 35(1): 256-264, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27507787

RESUMO

Traditionally, mesenchymal stem cells (MSCs) isolated from adult bone marrow were described as being capable of differentiating to various lineages including cartilage. Despite increasing interest in these MSCs, concerns regarding their safety, in vivo behavior and clinical effectiveness have restrained their clinical application. We hypothesized that MSCs have trophic effects that stimulate recycled chondrons (chondrocytes with their native pericellular matrix) to regenerate cartilage. Searching for a proof of principle, this phase I (first-in-man) clinical trial applied allogeneic MSCs mixed with either 10% or 20% recycled autologous cartilage-derived cells (chondrons) for treatment of cartilage defects in the knee in symptomatic cartilage defect patients. This unique first in man series demonstrated no treatment-related adverse events up to one year postoperatively. At 12 months, all patients showed statistically significant improvement in clinical outcome compared to baseline. Magnetic resonance imaging and second-look arthroscopies showed completely filled defects with regenerative cartilage tissue. Histological analysis on biopsies of the grafts indicated hyaline-like regeneration with a high concentration of proteoglycans and type II collagen. Short tandem repeat analysis showed the regenerative tissue only contained patient-own DNA. These findings support the novel insight that the use of allogeneic MSCs is safe and opens opportunities for other applications. Stem cell-induced paracrine mechanisms may play an important role in the chondrogenesis and successful tissue regeneration found. Stem Cells 2017;35:256-264.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Condrócitos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração , Adulto , Artroscopia , Cartilagem Articular/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Repetições de Microssatélites/genética , Transplante Autólogo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...